Maximising the Success of your Capital Program through Integer Programming Models

November 14, 2018

Mr. Michael Goggin Mr. Michael Matosin

CAPITAL PLANNING – AN OPPORTUNITY

Project Controls

SELECTION AND PRIORITIZATION

It's hard to get right...

- Inputs from wide range of stakeholders
- Changing 'landscape'
- Timing
- Hierarchical planning and revisions
- Reconciliation
- Realistic Scheduling

Heuristics – Critically important

...but are subject to bias

Our Argument:

A data-driven decision support system (DSS) can reduce overhead in the planning process by helping planners rapidly consider alternatives.

Our Approach:

Apply combinatorial optimization and other discrete techniques to Select and Schedule projects so that the 'Value' of the Portfolio is maximized subject to organizational constraints

PORTFOLIO OPTIMIZATION – HUMBLE BEGINNINGS

The Goal: Finding an optimal object from a finite set of objects.

- Linear Programs
- Integer Programs
- Traditional portfolio theory

Markowitz' Efficient Frontier

THE FUTURE IS BRIGHT

- Global move towards Al and automation
- Increased awareness
- Theoretical developments
- More computing power (Speed, RAM, Parallelization)
 - Ease of Access to scalable resources
 - Problems with *millions* of variables can be handled on a modern laptop

A TOUCH OF MATHS

Standard NPV objective function

Augmented for scheduling feasibility

Alternative objective functions

- Makespan
- Project Count
- Scorecard

Data-driven constraints

- Project details (Schedule, Cost, Type[])
- Resource availability
- Strategic considerations/business rules
- Project relationships and dependencies

$$\max \ Z = \sum_{i=1}^{K} \beta_{i}(V_{iw}, d_{iw}, r)$$

$$V_{iw} = \sum_{q=1}^{d_{iw}} CF_{iwq} (1+r)^{q-d_{iw}}$$

$$\beta_{i}(V_{iw}, d_{iw}, r) = \sum_{w=1}^{W} V_{iw} \left[\sum_{n=E_{iwd_{iw}}}^{L_{iwd_{iw}}} \frac{X_{iwd_{iw}^{n}}}{(1+r)^{n}} \right]$$

An approximation of a complex real-world problem

ITERATING THROUGH FEASIBILITY

Which projects should be selected in a 5 year plan and how should they be scheduled?

LIVE DEMONSTRATION

Maximize the value of our portfolio subject to:

- Budget Limitations
- Other Resource Limitations
- Business / Operations Rules

AN OPTIMIZED PLAN

Simultaneous Portfolio Schedule (NPV = \$17.73MM)

MAKESPAN VS NPV SCHEDULING

How do the following techniques compare? Which is the more valuable portfolio of projects.

- Minimized Portfolio Schedule Length (i.e., "Makespan")
- Maximized NPV Schedule

Simultaneous Portfolio Schedule (NPV = \$17.73MM)

Traditional Portfolio Schedule (NPV =\$17.41MM)

BENCHMARKS

# of Project	Budget s Period	Difficulty			Optimality Gap (OG)									
			Duration de (Months)		olve Time 10 Seconds)							OG Value (\$)		
	100 Yearly	Easy	60	<1s	<1s <1s	<1s	<1s	<1s	<1s	<1s	<1s	0%	0.00	
	100 Yearly	Mid	60	46	43.66 <1s	<1s	<1s	1s	1s	5s	43s	0%	0.00	
	100 Yearly	Hard	60	243	240 <1s	<1s	1s	1s	>240s	>240s	>240s	0.51%	5,497.00	
	100 Monthly	Easy	60	4	240 <1s	<1s	<1s	<1s	<1s	<1s	1s	0%	0.00	
	100 Monthly	Mid	60	243	240 1s	1s	2s	25s	165s	>240s	>240s	0.41%	12,647.00	
	100 Monthly	Hard	60	243	240 2s	40s	>240s	>240s	>240s	>240s	>240s	3.92%	66,649.00	
	500 Yearly	Easy	60	26	14 < 10s	<10s	<10s	10s	10s	10s	13	0.00%	0.00	
	500 Yearly	Mid	60	252	240 9s	10s	10s	10s	10s	12s	>240s	0.09%	1,678.00	
	500 Yearly	Hard	60	252	240 10s	10s	10s	10s	14s	>240s	>240s	0.45%	3,192.00	
	500 Monthly	Easy	60	30.5	17.5 <11s	<11s	<11s	11s	11s	11s	17s	0.00%	0.00	
	500 Monthly	Mid	60	251	240 24s	24s	100s	>240s	>240s	>240s	>240s	2.15%	76,044.00	
	500 Monthly	Hard	60	254	240 20s	20s	>240s	>240s	>240s	>240s	>240s	2.56%	93,442.00	
	1000 Yearly	Easy	60	56	32 24s	25s	27s	28s	30s	32s	32s	0.00%	0.00	
	1000 Yearly	Mid	60	261	240 < 30s	<30s	<30s	<30s	<30s	3	35 > 240s	0.01%	2,000.00	
	1000 Yearly	Hard	60	260	240 < 20s	21s	21s	53s	>240s	>240s	>240s	0.77%	8,120.00	
	1000 Monthly	Med	60	265	240 <45s	<45s	<45s	47s	47s	48s	>240s	0.03%	9,000.00	
	1000 Monthly	Med	60	226	203.6 97s	103s	110s	140s	160s	19	199	0	0.00	
	1000 Monthly	Hard	60	264	240 60s	60s	78s	>240s	>240s	>240s	>240s	1.23%	117,000.00	

DECISION SUPPORT

- Planning scenarios can be developed with 'real time' feedback to Planners
 - Identify constraints
 - Validate and update assumption
- Quickly Evaluate Alternate and What-if Scenarios
- Support for collaboration during plan drafts
- Real time scenario development and evaluation can better enable the Planning team,

Project Control

KEY TAKEAWAYS

- Competitive advantage
 - Faster decision making, better decisions, and more timely decision cycles.
- Decision Support
 - Human input and intuition is vital/critical to successful planning.
- Value
 - Reduces opportunity cost of the capital planning process
 - Promotes selection of higher valued portfolio

